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¢ Midterm Results
* Review last class
— Stability of numerical solutions
— Step size variation for error control

— Multistep methods with constant and
variable step size

e Systems of equations

« Definition of stiff systems
 Algorithms for stiff systems
¢ Finding if system is stiff
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Midterm Problem One

yoadv oo, ¥(0)=1,y'(0) =

St |_-|E +y=8e"-2x-1 0,y(1) =0

* Indicial equation, A3+ 3A2 + 3L + 1= (L
+ L)% = 0, has three identical roots of -1
SO Yy = (Cl + sz + ngz)e_x

* Plug trial y, = Ae* + Bx + C into ODE to
findA=1,B=-2,andC=5

e y=(C,+Cox+C3x¥)e ™ +e¥—2x+5

s y(0)=1=Ce%+e’-20)+5=1

Cl = —5 3

Cabiforni State Unhersity
Nnrthlridge

Midterm Problem One Il

oy =—(Ci+ Cox+ C3x¥)e ™ +e*—2+
(C,+2C3x)e™*=0atx=0

o —(Ce %+e%—2+Ce =0

+C,=C,-1+2=C;+1=-5+1=4

« Boundary condition that y(1) = 0 is
solved to find C; = 9 — 3e — €?

 Solution is

y= [—5—4x+[‘)—3c—c:l\'zk‘"‘ +e" =2x+5

Calbiforni State University
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Midterm Problem Two

* Solve using Laplace transforms [y(0) =

landy'(0)=-1 g%y é
y'(0) ] d,:i +3d_J+2_]-': 10sin?
dr’ dt

o s2Y(s) — sy(0) — y'(0) + 3[sY(s) —
y(0)] + 2Y(s)2= 1052+;12 SoIv?gor Y(s)
YO =G+ T G oG+ DeI D

» Rearrange/use partial fractions for Y(s)
Y(s) = A B+1 | Cs+D

+
Northridge

i (s+2)  (s+1) (sz+12)

Midterm Problem Two Il

ME 501A Seminar in Engineering

« Partial fractions results A=-2,B=5,C
=-3,D=1s0Y(s) equationis Y(s) =
-2 6 + —3s+1
(s+2) = (s+1) = (s2+1?)
¢ Finding inverse transforms gives the

final result
o y(t) = —2e7% + 67t — 3cos(t) + sin(t)

Calbiforni State University
Nnrthlridge
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Midterm Problem Three

» Rearrangement gives examples of

Bessel's equation with v=2 and v = 0.5
y 1dy (X0 y=0

A2 v dy 2

dx?  x dx X
» For integer v=n =2, solutionisy =
AJ,(x) + BY,(x); for non-integer v = 0.5,
solution is Ay 5(X) + BJ g 5(X)
« Fitting boundary conditions gives first
result as 3.226J,(x) + 0.2247Y,(x) and
second as 1.138J, 5(x) — 1.771J 4 5(X)

Californin State [niversity
Northridge

Systems of Equations

* Any problem with one or more ODEs of
any order can be reduced to a system
for first order ODEs

« In a previous lecture, we reduced a
system of two second order equations
to a system of four first order equations

« In this process the sum of the orders is
constant

« Look at previous example

Calrforrsi Sate Unfversity
Northridge

Reduction of Order Example

System of Equation Notation

d’y, ktk ok

dtz +le1_ayz =0
+ Define variables y; = dy,/dt and y, = dy,/dt
 Then dy,/dt = d?y,/dt? and dy,/dt = d?y,/dt?

* Have four simultaneous first-order ODEs

dz)’z k, y +k3+k2y

2 1
dat®  m, m,

,=0

d d
dytd: Yo = f;(x.z) kdy; == fa(0)
+
dyt3 == 1ml z y1+ajyz = f3(x,y)

dy, _kp . _kstk,
sy A =2y, ——3 L 2y = f (X,
Northridge dt m, N m, Yo = fi(xy) .

* Write system as dl =f(x,y)
vector equation dx ’

. ivi dy;
Individual S _ g (x y) = £,X, ¥s. Voreees )
components  dx

* Each f; may depend on x and all y,

d d

dytd= Y= f;(x,i) de;= Vo= (%)
Y3 1Ky 2
Bs_ K*ley ooy _fx,
at m, Y1+ml Y2 = f3(xy)
dy, _ ko kstk,

PP LRSIV
Northridge dt m, Y m, yo=f(xy)

Solving Simultaneous ODEs

» Apply same algorithms used for single
ODEs

— Must apply each step and substep to all
equations in system

— Key is having consistent x and y values in
determination of fi(x,y)

— All y, values in y must be available at the
same x point when computing the f;

— E.g., in Runge-Kutta we must evaluate k,
for all equations before finding k,

Californin State [ niversity
Northridge

Runge-Kutta for ODE System

- Y is vector of dependent variables at x = x,

- !‘(1>* Ky, k(a), and k4, are vectors containing
intermediate Runge-Kutta results

—fis a vector containing the derivatives

=Ky = hf = hf(x,, y()

=k = hf(x,+ h/2, y e+ kyy/2)

=k = hf(x, + h/2, y )+ Kp/2)

=Ky = hf(X,+ h, y + Keg)

~Yeny = Ky + 2Ky + 2Kg) + K))/6

Calrforrsi Sate University 12
Northridge
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ODE System by RK4

» dy/dx = -y + z and dz/dx = y — z with
y(0)=1and z(0) =-1withh=.1

* Kgyy =hly+2]=0.1[-1+(-1)]=-.2

* Kg, =hly-2z]=0.1[1-(-1)] = .2

* Kgy = h[-(y+ K /2) + 2 + K(3),/2] = 0.1]
-(1+-0.2/2) + (-1 + .2/2)] = -.18

* Ky, = hl(y+ Kpy/2) ~(z + K1), /2)]
+-0.2)/2 - (-1 + .2/2)] =

= 0.1[(1

Californin State [niversity 13
Northridge
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ODE System by RK4 1
* Ky = hl-(y+ Ky, /2) + 2 + Kp),/2] = 0.1]
-(1+-0.18/2) + (-1 + .18/2)] = -.182
* Kayz = hl(y+ ke)/2) ~(2 +k/2)] = 0.1](1
+-0.18)/2 - (-1 + .18/2)] = .182
* Ky = h-(y+ Kg),) + 2 + K] = 0.1 (1 +
-0.182) + (-1 + .182)] = -.1636

* Ky, = hl(y+ Kg)) (2 + k)] = 0.1[ (1 +
-0.182) - (-1 + .182)] = .1636

Calrforrsi Sate Unfversity 14
Northridge

ODE System by RK4 IlI

* Vi TYit Koy + 2K, + 2K, + Ky, )/6
=1+[ (-2) + 2(-.18) + 2(-.182) +
(—.1636)]/6 = .8187

* 2y =7+ Ky, + 2K, + 2Kia), + Ky, )/6
=-1+[(.2) + 2(.18) + 2(.182) +
(.1636)]/6 = —.8187

» Continue in this fashion until desired
final x value is reached

» No x dependence for f in this example

Californin State [ niversity 15
Northridge

Numerical Software for ODESs

 Usually written to solve a system of N
equations, but will work for N =1

« User has to code a subroutine or
function to compute the f array
— Input variables are x and y; f is output

— Some codes have one dimensional
parameter array to pass additional
information from main program into the
function that computes derivatives

Calrforrsi Sate University 16
Northridge

Derivative Subroutine Example

* Visual Basic code gy,
for system of *—‘yﬁ\/yiﬁ yae*
ODEs at right is dy, dy,
shown below v 2y} oA

Sub fsub( x as Double, y() as Double, _
() as Double )
(D = -y + Sar(y(2)) + y()*Exp(2*x)
(2 = -2 > y(O"2
3 = -3*y@ *y®@

End Subc,

- 17
Northridge

ME 501A Seminar in Engineering

Analysis

Derivative Subroutine Example

* Fortran code for

system of ODEs dx =Yy + Y, + Ve€’
at right is shown dy, , dy,
below PR v AL

subroutine fsub( x, y, )
real (KIND=8) x, y(:), F(:)
(1) = -y(@) + sart(y(2)) +y(3)*exp(2*x)
f(2) = -2 * y(1)**2
f3) = -3 *y@ *y®@
end subroutine fsub

Calrforrsi Sate University 18
Northridge
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Derivative Subroutine Example

» C++ code for dy, N
system of ODEs &=‘y1+\/>’72+ Ya€
at right is shown dy, , dy,
below VIR AL

void fsub(double x, double y[], double f[])
{
f[1] = -y[1] + sart(y[2]) + y[3]*exp(2*x);
f[2] = -2 > y[1] * yI11;
f[3] = -3 * y[1] * yI2]:

Californin State [niversity 19
Northridge

}
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Stiff Systems of Equations

* Several definitions

« Basic problem is that there are several
length or time constants (eigenvalues)
in the system
— If one is negative and large in magnitude

compared to others, this will set stability

— Such terms quickly drop to zero and do not
affect physical solution

— However, they force small h for stability

Calrforrsi Sate Unfversity 20
Northridge

Single Stiff Equation

» Nonhomogenous equation with different
length (time) scales
 dy/dx = f(x,y) = -a[y — F(X)] + dF/dx
* ¥ =Iyo— F(0)]e™ + F(x)
— Solution details on next two charts
* Fx)=cx+bry=[y,—ble®+cx+Db
= Ylyo = (1 = blyg)e + cxly, + bly,
= Ylyo = (1 - blyg)e® + ax(cly,) + bly,

—yly, > e®as x — 0andyly, - bly, +
(clyg)(ax) as x > o

Californin State [ niversity 21
Northridge

Stiff Equation Solution I

= | e*aFdx 41‘/ eaxdi:\‘.: By parts
Je*ard g JerdF - Jetarac oy por
uF - [Fdu

y=e [C +| g(x)eaxdsz e [C + eaXF]: Ce ™ +F(x)
C=y,~F(0) so y=[y,~F(O)™+F(x)

Californin State [ niversity 23
Northridge
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Stiff Equation Solution

o dy/dx = f(x,y) = -a]y — F(X)] + dF/dx solu-
tion from formula for a first-order ODE

lef f(x)y=9(x) f(x)=a g(x)=aF +dj
dx dx

y= ejf(x)dx{c + J'(g(x)ejf(x)dx )dx}
y= efadx{c + j(g(x)efadxjdx}
y=e™ [C + I g (x)eaxdx] ,

Calrforrsi Sate University
Northridge

Gear’s Method

» Use implicit algorithms with solution by
Newton’s method

» General algorithm shown below
—k is global order of the method
— Coefficients: See table next slide

K
yn+1 = 7ﬂnfn+1 + Za—j yn—j
j=0
m) _ 9<y(m))

» Solving g(y) =0 by

(m+1) _
Newton’s method Y =

y

Calrforrsi Sate University 24
Northridge
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Gear’s Method Coefficients

k| v Bl o a,] o, la,lal
1 1 1 1

2 13 2 4 -1

3 111 6 18 -9 2

4 1/25 12 48 -36 16 -3
5

1/137 60 300 -30 200 -75 12

6 1/147 60 360 -450 400 -225 72 -10

25

Northridge

Newton’s Method

« Iterate to find y such that g(y) = 0, write
Taylor series for step from old y value,
y(M to new y value, ym+)

(m)
m+: m d m+. m
9" =g+ gl (- y®)+0m)

. +1)) =
Set g(y™1) =0 and M) m g(y™)
solve for y(m —ym Y y = da™
— Use this to iterate since a9
solution is not exact dy

26

Northridge

k
Solving Y. =7, +> a Y,
j=0

k
g(yn+l) = yn+1 - 7/ﬂnf (Xn+11 yn+1) - Za—jyn—j =0

(m)
ms) _ m _ —9(Yan)
yn+1 yn+1 - g yn+1

dg (m)
* |terate to di
get_yn+1 y
.(tm ISt. d (m) f
iteration g i
=1-yph—

index) E » oy

n+l

(m)

n+l
27

Northridge

Multivariable Gear Method
* Implicit equation iny,,,

yl n+l 7ﬂhf n+1? yn+l Za—jyl n-j

» Expand f,,, in Taylor series between

iteration m and iteration m+1 for y,,,
(m)

E

yl(:ﬁ) 7&1[ fi (Xn+1' y(nT]).) ZD:

Jlay]

n+l

v~y o)+ Yy,
California Suate | j=0
Nurthrldge

28

Multivariable Gear Method Il

* We have a set of simultaneous linear
equations to solve for y,,, components
at each iteration

im[é‘u -yph

i1

(m)
of; m+ m
glj ](yﬁ n+11) y§ n)+1)

n+1

K
(m) (m)
==Yinn + yphf; (Xn+1vyn+1)+ O Yin-j
i—0

1 State Linfyersity 29

Nurthrldge

Partial Derivatives

* Need partial dy
1__
derivatives of h=yy, + Yl
each f; with dyz . dy,
respect to each y; P v A
a—flzfl ﬁzlyz’l/z ﬁ:en
ay1 Byz 2 ay3
Loy, T T
v, o, oy,
of, of, of
i =73y, E=-3y, =0
Northridge %1 oy, oy,

ME 501A Seminar in Engineering
Analysis
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Subroutine for Partials C++ Function for Partials
 This can come in different forms void pderiv( double x, double y[],
depending on array allocation of code int k, double p[] )

» One simple form is to use repeated calls { i
to the subroutine for each f, if (k==1)
« The index, i, and the values of x and the { vpl1] = -1;
y array are passed to the routine and p[2] = 0.5 7/ sqrt( y[2] ):;
the values of the partial derivatives of f, p[3] = exp( 2 * x );
with respect to each y; are returned in a }

one dimensional array, p else if (k==2)

Northridge * Northridge »
C++ Function for Partials Il Group Work
{ vpl1l1 = -4 * y[1]; « Start work on the first problem on the
pl2] = p[3] = O; homework for November 29
3 + Solve the problem y’ = -0.2xy with y(0) =
else if ( k==3) 1 for four steps, with h = 0.2, using the
{ pI1] = -3 * y[2]; Adams-Moulton method
pl2] = -3 * y[1]; + See the next slide for the algorithm as
p[3] = O; well as the starting values from the
3} fourth-order Runge-Kutta
} + Exact solution is y = e~ 0-1x*
Northridge ® Northridge *

Group Work Il

* Use Adams method to solve y’ = -0.2xy
with y(0) = 1 for four steps, with h = 0.2

h
yh=y Jra[*gfu +37f =591 *55f;]

3 = 3 i =501 419,990

X \V exact v, error fi
0 1 1 0 0
0.996008| 0.996008| 1.07E-11] -0.03984
0.4| 0.984127| 0.984127| 1.04E-10| -0.07873
0.964640] 0.964640] 3.38E-10| -0.11576)

[N ()
o
[N

35
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