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Outline
• Midterm Results
• Review last class

– Stability of numerical solutions
– Step size variation for error control
– Multistep methods with constant and 

variable step size
• Systems of equations
• Definition of stiff systems
• Algorithms for stiff systems
• Finding if system is stiff

Midterm Problem One
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y(0) = 1, y’(0) = 
0, y(1) = 0

• Indicial equation, 3 + 32 + 3 + 1 = (
+ )3 = 0, has three identical roots of -1 
so ݕு ൌ ଵܥ ൅ ݔଶܥ ൅ ଶݔଷܥ ݁ି௫

• Plug trial yP = Aex + Bx + C into ODE to 
find A = 1, B = -2, and C = 5

• y = ଵܥ ൅ ݔଶܥ ൅ ଶݔଷܥ ݁ି௫ ൅ ݁௫ െ ݔ2 ൅ 5
• y(0) ଵ݁ି଴ܥ = 1 = ൅ ݁଴ െ 2 0 ൅ 5 = 1

ଵܥ ൌ െ5

Midterm Problem One II
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• y’ = െ ଵܥ ൅ ݔଶܥ ൅ ଶݔଷܥ ݁ି௫ ൅ ݁௫ െ 2 ൅
ଶܥ ൅ ݔଷܥ2 ݁ି௫ ൌ ݔ	ݐܽ	0 ൌ 0

• െ ଵܥ ݁ି଴ ൅ ݁଴ െ 2 ൅ ଶ݁ି଴ܥ ൌ 0
• C2 = C1 – 1 + 2 = C1 + 1 = -5 + 1 = -4

• Boundary condition that y(1) = 0 is 
solved to find C3 = 9 – 3e – e2

• Solution is

Midterm Problem Two

• Solve using Laplace transforms [y(0) = 
1 and y’(0) = -1]

• 2ܻݏ ݏ െ ݕݏ 0 െ ′ݕ 0 ൅ 3ሾܻݏ ݏ െ
ݕ 0 ሿ ൅ 2ܻ ݏ ൌ 10 1

2൅12ݏ

• Rearrange/use partial fractions for Y(s) 

ܻ ݏ ൌ ܣ

൅2ݏ
൅ ൅1ܤ

൅1ݏ
൅ ܦ൅ݏܥ

2൅12ݏ
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ܻ ݏ ൌ
ݏ ൅ 2

ݏ ൅ 2 ݏ ൅ 1
൅

10
ݏ ൅ 2 ݏ ൅ 1 ଶݏ ൅ 1ଶ

Solve for Y(s)

Midterm Problem Two II

• Partial fractions results A = -2, B = 5, C 
= -3, D = 1 so Y(s) equation is ܻ ݏ ൌ
ିଶ

௦ାଶ
൅ ଺

௦ାଵ
൅ ିଷ௦ାଵ

௦మାଵమ

• Finding inverse transforms gives the
final result

• ݕ ݐ ൌ െ2݁െ2ݐ ൅ 6݁െݐ െ ݏ݋3ܿ ݐ ൅ ݊݅ݏ ݐ
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Midterm Problem Three

• Rearrangement gives examples of 
Bessel’s equation with  = 2 and  = 0.5

• For integer  = n = 2, solution is y =
AJ2(x) + BY2(x); for non-integer  = 0.5, 
solution is AJ0.5(x) + BJ-0.5(x)

• Fitting boundary conditions gives first 
result as 3.226J2(x) + 0.2247Y2(x) and 
second as 1.138J0.5(x) – 1.771J-0.5(x)
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Systems of Equations
• Any problem with one or more ODEs of 

any order can be reduced to a system 
for first order ODEs

• In a previous lecture, we reduced a 
system of two second order equations 
to a system of four first order equations

• In this process the sum of the orders is 
constant

• Look at previous example
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Reduction of Order Example

• Define variables y3 = dy1/dt and y4 = dy2/dt 
• Then dy3/dt = d2y1/dt2 and dy4/dt = d2y2/dt2

• Have four simultaneous first-order ODEs
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System of Equation Notation

• Write system as 
vector equation

),( yf
y

x
dx

d


• Individual 
components

),,,,(),( 21 Nii
i yyyxfxf

dx

dy
 y

• Each fi may depend on x and all yj
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Solving Simultaneous ODEs
• Apply same algorithms used for single 

ODEs
– Must apply each step and substep to all 

equations in system
– Key is having consistent x and y values in 

determination of fi(x,y)
– All yi values in y must be available at the 

same x point when computing the fi
– E.g., in Runge-Kutta we must evaluate k1

for all equations before finding k2
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Runge-Kutta for ODE System
– y(n) is vector of dependent variables at x = xn

– k(1), k(2), k(3), and k(4), are vectors containing 
intermediate Runge-Kutta results

– f is a vector containing the derivatives

– k(1) = hf = hf(xn, y(n))

– k(2) = hf(xn + h/2, y(n) + k(1)/2)

– k(3) = hf(xn + h/2, y(n) + k(2)/2)

– k(4) = hf(xn + h, y(n) + k(3))

– y(n+1) = (k(1) + 2k(2) + 2k(3) + k(4))/6
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ODE System by RK4

• dy/dx = -y + z and dz/dx = y – z with 
y(0) = 1 and z(0) = -1 with h = .1

• k(1)y = h[-y + z] = 0.1[-1 + (-1)] = -.2

• k(1)z = h[y - z] = 0.1[1 - (-1)] = .2

• k(2)y = h[-(y+ k(1)y/2) + z + k(1)z/2] = 0.1[   
-(1 + -0.2/2) + (-1 + .2/2)] = -.18

• k(2)z = h[(y+ k(1)y/2) –(z + k(1)z/2)] = 0.1[(1 
+ -0.2)/2 - (-1 + .2/2)] = .18
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ODE System by RK4 II

• k(3)y = h[-(y+ k(2)y/2) + z + k(2)z/2] = 0.1[   
-(1 + -0.18/2) + (-1 + .18/2)] = -.182

• k(3)z = h[(y+ k(2)y/2) –(z + k(2)z/2)] = 0.1[(1 
+ -0.18)/2 - (-1 + .18/2)] = .182

• k(4)y = h[-(y+ k(3)y) + z + k(3)z] = 0.1[  -(1 + 
-0.182) + (-1 + .182)] = -.1636

• k(4)z = h[(y+ k(3)y) –(z + k(3)z)] = 0.1[ (1  + 
-0.182) - (-1 + .182)] = .1636
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ODE System by RK4 III

• yi+1 = yi +  (k(1)y + 2k(2)y + 2k(3)y + k(4)y )/6 
=  1  + [  (–.2)  +  2(–.18) +  2(–.182)  + 
(–.1636)]/6 = .8187

• zi+1 = zi +  (k(1)z + 2k(2)z + 2k(3)z + k(4)z )/6 
= –1 + [(.2) + 2(.18) + 2(.182) + 
(.1636)]/6 = –.8187

• Continue in this fashion until desired 
final x value is reached

• No x dependence for f in this example
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Numerical Software for ODEs

• Usually written to solve a system of N 
equations, but will work for N = 1

• User has to code a subroutine or 
function to compute the f array
– Input variables are x and y; f is output 

– Some codes have one dimensional 
parameter array to pass additional 
information from main program into the 
function that computes derivatives
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Derivative Subroutine Example

• Visual Basic code 
for system of 
ODEs at right is 
shown below

Sub fsub( x as Double, y() as Double, _   
f() as Double )

f(1) = -y(1) + Sqr(y(2)) + y(3)*Exp(2*x)

f(2) = -2 * y(1)^2

f(3) = -3 * y(1) * y(2)

End Sub
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Derivative Subroutine Example

• Fortran code for 
system of ODEs 
at right is shown 
below

subroutine fsub( x, y, f )
real(KIND=8) x, y(:), f(:)
f(1) = -y(1) + sqrt(y(2)) +y(3)*exp(2*x)
f(2) = -2 * y(1)**2
f(3) = -3 * y(1) * y(2)

end subroutine fsub
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dx
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Derivative Subroutine Example

• C++ code for 
system of ODEs 
at right is shown 
below

void fsub(double x, double y[], double f[])

{

f[1] = -y[1] + sqrt(y[2]) + y[3]*exp(2*x);

f[2] = -2 * y[1] * y[1];

f[3] = -3 * y[1] * y[2];

}
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Stiff Systems of Equations

• Several definitions

• Basic problem is that there are several 
length or time constants (eigenvalues) 
in the system
– If one is negative and large in magnitude 

compared to others, this will set stability

– Such terms quickly drop to zero and do not 
affect physical solution

– However, they force small h for stability

21

Single Stiff Equation
• Nonhomogenous equation with different 

length (time) scales 
• dy/dx = f(x,y) = -a[y – F(x)] + dF/dx
• y = [y0 – F(0)]e-ax + F(x)

– Solution details on next two charts

• F(x) = cx + b: y = [y0 – b] e-ax + cx + b
– y/y0 = (1 – b/y0)e-ax + cx/y0 + b/y0

– y/y0 = (1 – b/y0)e-ax + ax(c/y0) + b/y0

– y/y0  e-ax as x  0 and y/y0  b/y0 + 
(c/y0)(ax) as x  
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Stiff Equation Solution
• dy/dx = f(x,y) = -a[y – F(x)] + dF/dx solu-

tion from formula for a first-order ODE
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Stiff Equation Solution II

dx
dx
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Gear’s Method

• Use implicit algorithms with solution by 
Newton’s method

• General algorithm shown below
– k is global order of the method
– Coefficients: See table next slide
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• Solving g(y) = 0 by 
Newton’s method
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Gear’s Method Coefficients

k        

1 1 1 1

2 1/3 2 4 -1

3 1/11 6 18 -9 2

4 1/25 12 48 -36 16 -3

5 1/137 60 300 -30 200 -75 12

6 1/147 60 360 -450 400 -225 72 -10
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Newton’s Method

• Iterate to find y such that g(y) = 0, write 
Taylor series for step from old y value, 
y(m) to new y value, y(m+1)
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• Set g(y(m+1)) = 0 and 
solve for y(m+1) – y(m) 

– Use this to iterate since 
solution is not exact

27

Solving
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• Iterate to 
get yn+1
(m is 
iteration 
index)  
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Multivariable Gear Method

• Implicit equation in yn+1

• Expand fn+1 in Taylor series between 
iteration m and iteration m+1 for yn+1
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Multivariable Gear Method II

• We have a set of simultaneous linear 
equations to solve for yn+1 components 
at each iteration
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Partial Derivatives

• Need partial 
derivatives of 
each fi with 
respect to each yj
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Subroutine for Partials

• This can come in different forms 
depending on array allocation of code

• One simple form is to use repeated calls 
to the subroutine for each fi

• The index, i, and the values of x and the 
y array are passed to the routine and 
the values of the partial derivatives of fk
with respect to each yj are returned in a 
one dimensional array, p

32

C++ Function for Partials

void pderiv( double x, double y[],
int k, double p[] )

{
if ( k == 1 )

{   p[1] = -1;

p[2] = 0.5 / sqrt( y[2] );

p[3] = exp( 2 * x );

}

else if ( k == 2 )
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C++ Function for Partials II
{   p[1] = -4 * y[1];

p[2] = p[3] = 0;

}

else if ( k == 3 )

{   p[1] = -3 * y[2];

p[2] = -3 * y[1];

p[3] = 0;

}

}
34

Group Work

• Start work on the first problem on the 
homework for November 29

• Solve the problem y’ = -0.2xy with y(0) = 
1 for four steps, with h = 0.2, using the 
Adams-Moulton method

• See the next slide for the algorithm as 
well as the starting values from the 
fourth-order Runge-Kutta

• Exact solution is y = ݁ି଴.ଵ௫
మ
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Group Work II

• Use Adams method to solve y’ = -0.2xy 
with y(0) = 1 for four steps, with h = 0.2

i xi yi exact yi error fi
0 0 1 1 0 0
1 0.2 0.996008 0.996008 1.07E-11 -0.03984
2 0.4 0.984127 0.984127 1.04E-10 -0.07873
3 0.6 0.964640 0.964640 3.38E-10 -0.11576


