
Stiff Systems of Ordinary Differential
Equations

November 22, 2017

ME 501A Seminar in Engineering
Analysis Page 1

Stiff Systems of Ordinary
Differential Equations

Larry Caretto

Mechanical Engineering 501A

Seminar in Engineering Analysis

November 22, 2017

2

Outline
• Midterm Results
• Review last class

– Stability of numerical solutions
– Step size variation for error control
– Multistep methods with constant and

variable step size
• Systems of equations
• Definition of stiff systems
• Algorithms for stiff systems
• Finding if system is stiff

Midterm Problem One

3

y(0) = 1, y’(0) =
0, y(1) = 0

• Indicial equation, 3 + 32 + 3 + 1 = (
+)3 = 0, has three identical roots of -1
so

• Plug trial yP = Aex + Bx + C into ODE to
find A = 1, B = -2, and C = 5

• y = 2 5
• y(0) = 1 = 2 0 5 = 1

5

Midterm Problem One II

4

• y’ = 2
2 0	 	 0

• 2 0
• C2 = C1 – 1 + 2 = C1 + 1 = -5 + 1 = -4

• Boundary condition that y(1) = 0 is
solved to find C3 = 9 – 3e – e2

• Solution is

Midterm Problem Two

• Solve using Laplace transforms [y(0) =
1 and y’(0) = -1]

• 2 0 ′ 0 3
0 2 10 1

2 12

• Rearrange/use partial fractions for Y(s)

2

1

1 2 12
5

2
2 1

10
2 1 1

Solve for Y(s)

Midterm Problem Two II

• Partial fractions results A = -2, B = 5, C
= -3, D = 1 so Y(s) equation is

• Finding inverse transforms gives the
final result

• 2 2 6 3

6

Stiff Systems of Ordinary Differential
Equations

November 22, 2017

ME 501A Seminar in Engineering
Analysis Page 2

Midterm Problem Three

• Rearrangement gives examples of
Bessel’s equation with = 2 and = 0.5

• For integer = n = 2, solution is y =
AJ2(x) + BY2(x); for non-integer = 0.5,
solution is AJ0.5(x) + BJ-0.5(x)

• Fitting boundary conditions gives first
result as 3.226J2(x) + 0.2247Y2(x) and
second as 1.138J0.5(x) – 1.771J-0.5(x)

7

0
1

2

22

2

2

 y

x

x

dx

dy

xdx

yd

8

Systems of Equations
• Any problem with one or more ODEs of

any order can be reduced to a system
for first order ODEs

• In a previous lecture, we reduced a
system of two second order equations
to a system of four first order equations

• In this process the sum of the orders is
constant

• Look at previous example

9

Reduction of Order Example

• Define variables y3 = dy1/dt and y4 = dy2/dt
• Then dy3/dt = d2y1/dt2 and dy4/dt = d2y2/dt2

• Have four simultaneous first-order ODEs

00 2
2

23
1

2

2
2

2
2

2
1

2
1

1

21
2

1
2

 y
m

kk
y

m

k

dt

yd
y

m

k
y

m

kk

dt

yd

),(

),(

),(),(

42
2

23
1

2

24

32
1

2
1

1

213

24
2

13
1

y

y

yy

xfy
m

kk
y

m

k

dt

dy

xfy
m

k
y

m

kk

dt

dy

xfy
dt

dy
xfy

dt

dy

10

System of Equation Notation

• Write system as
vector equation

),(yf
y

x
dx

d

• Individual
components

),,,,(),(21 Nii
i yyyxfxf

dx

dy
 y

• Each fi may depend on x and all yj

),(

),(

),(),(

42
2

23
1

2

24

32
1

2
1

1

213

24
2

13
1

y

y

yy

xfy
m

kk
y

m

k

dt

dy

xfy
m

k
y

m

kk

dt

dy

xfy
dt

dy
xfy

dt

dy

11

Solving Simultaneous ODEs
• Apply same algorithms used for single

ODEs
– Must apply each step and substep to all

equations in system
– Key is having consistent x and y values in

determination of fi(x,y)
– All yi values in y must be available at the

same x point when computing the fi
– E.g., in Runge-Kutta we must evaluate k1

for all equations before finding k2

12

Runge-Kutta for ODE System
– y(n) is vector of dependent variables at x = xn

– k(1), k(2), k(3), and k(4), are vectors containing
intermediate Runge-Kutta results

– f is a vector containing the derivatives

– k(1) = hf = hf(xn, y(n))

– k(2) = hf(xn + h/2, y(n) + k(1)/2)

– k(3) = hf(xn + h/2, y(n) + k(2)/2)

– k(4) = hf(xn + h, y(n) + k(3))

– y(n+1) = (k(1) + 2k(2) + 2k(3) + k(4))/6

Stiff Systems of Ordinary Differential
Equations

November 22, 2017

ME 501A Seminar in Engineering
Analysis Page 3

13

ODE System by RK4

• dy/dx = -y + z and dz/dx = y – z with
y(0) = 1 and z(0) = -1 with h = .1

• k(1)y = h[-y + z] = 0.1[-1 + (-1)] = -.2

• k(1)z = h[y - z] = 0.1[1 - (-1)] = .2

• k(2)y = h[-(y+ k(1)y/2) + z + k(1)z/2] = 0.1[
-(1 + -0.2/2) + (-1 + .2/2)] = -.18

• k(2)z = h[(y+ k(1)y/2) –(z + k(1)z/2)] = 0.1[(1
+ -0.2)/2 - (-1 + .2/2)] = .18

14

ODE System by RK4 II

• k(3)y = h[-(y+ k(2)y/2) + z + k(2)z/2] = 0.1[
-(1 + -0.18/2) + (-1 + .18/2)] = -.182

• k(3)z = h[(y+ k(2)y/2) –(z + k(2)z/2)] = 0.1[(1
+ -0.18)/2 - (-1 + .18/2)] = .182

• k(4)y = h[-(y+ k(3)y) + z + k(3)z] = 0.1[-(1 +
-0.182) + (-1 + .182)] = -.1636

• k(4)z = h[(y+ k(3)y) –(z + k(3)z)] = 0.1[(1 +
-0.182) - (-1 + .182)] = .1636

15

ODE System by RK4 III

• yi+1 = yi + (k(1)y + 2k(2)y + 2k(3)y + k(4)y)/6
= 1 + [(–.2) + 2(–.18) + 2(–.182) +
(–.1636)]/6 = .8187

• zi+1 = zi + (k(1)z + 2k(2)z + 2k(3)z + k(4)z)/6
= –1 + [(.2) + 2(.18) + 2(.182) +
(.1636)]/6 = –.8187

• Continue in this fashion until desired
final x value is reached

• No x dependence for f in this example

16

Numerical Software for ODEs

• Usually written to solve a system of N
equations, but will work for N = 1

• User has to code a subroutine or
function to compute the f array
– Input variables are x and y; f is output

– Some codes have one dimensional
parameter array to pass additional
information from main program into the
function that computes derivatives

17

Derivative Subroutine Example

• Visual Basic code
for system of
ODEs at right is
shown below

Sub fsub(x as Double, y() as Double, _
f() as Double)

f(1) = -y(1) + Sqr(y(2)) + y(3)*Exp(2*x)

f(2) = -2 * y(1)^2

f(3) = -3 * y(1) * y(2)

End Sub

21
32

1
2

2
321

1

32 yy
dx

dy
y

dx

dy

eyyy
dx

dy x

18

Derivative Subroutine Example

• Fortran code for
system of ODEs
at right is shown
below

subroutine fsub(x, y, f)
real(KIND=8) x, y(:), f(:)
f(1) = -y(1) + sqrt(y(2)) +y(3)*exp(2*x)
f(2) = -2 * y(1)**2
f(3) = -3 * y(1) * y(2)

end subroutine fsub

21
32

1
2

2
321

1

32 yy
dx

dy
y

dx

dy

eyyy
dx

dy x

Stiff Systems of Ordinary Differential
Equations

November 22, 2017

ME 501A Seminar in Engineering
Analysis Page 4

19

Derivative Subroutine Example

• C++ code for
system of ODEs
at right is shown
below

void fsub(double x, double y[], double f[])

{

f[1] = -y[1] + sqrt(y[2]) + y[3]*exp(2*x);

f[2] = -2 * y[1] * y[1];

f[3] = -3 * y[1] * y[2];

}

21
32

1
2

2
321

1

32 yy
dx

dy
y

dx

dy

eyyy
dx

dy x

20

Stiff Systems of Equations

• Several definitions

• Basic problem is that there are several
length or time constants (eigenvalues)
in the system
– If one is negative and large in magnitude

compared to others, this will set stability

– Such terms quickly drop to zero and do not
affect physical solution

– However, they force small h for stability

21

Single Stiff Equation
• Nonhomogenous equation with different

length (time) scales
• dy/dx = f(x,y) = -a[y – F(x)] + dF/dx
• y = [y0 – F(0)]e-ax + F(x)

– Solution details on next two charts

• F(x) = cx + b: y = [y0 – b] e-ax + cx + b
– y/y0 = (1 – b/y0)e-ax + cx/y0 + b/y0

– y/y0 = (1 – b/y0)e-ax + ax(c/y0) + b/y0

– y/y0 e-ax as x 0 and y/y0 b/y0 +
(c/y0)(ax) as x

22

Stiff Equation Solution
• dy/dx = f(x,y) = -a[y – F(x)] + dF/dx solu-

tion from formula for a first-order ODE

dx

dF
aFxgaxfxgyxf

dx

dy
)()()()(

dxexgCey

dxxfdxxf)()(
)(

dxexgCey

adxadx
)(

 dxexgCey axax)(

23

Stiff Equation Solution II

dx
dx

dF
aFedxexg axax

)(

FedxaeFFe

aFdxedFeaFdxe

axaxax

axaxax

)(

)()(xFCeFeCedxexgCey axaxaxaxax
)()0()0(00 xFeFyysoFyC ax

By parts
udF =
uF - Fdu

24

Gear’s Method

• Use implicit algorithms with solution by
Newton’s method

• General algorithm shown below
– k is global order of the method
– Coefficients: See table next slide

k

j
jnjnn yhfy

0
11

• Solving g(y) = 0 by
Newton’s method

)(

)(
)()1(

' m

m
mm

yg

yg
yy

Stiff Systems of Ordinary Differential
Equations

November 22, 2017

ME 501A Seminar in Engineering
Analysis Page 5

25

Gear’s Method Coefficients

k

1 1 1 1

2 1/3 2 4 -1

3 1/11 6 18 -9 2

4 1/25 12 48 -36 16 -3

5 1/137 60 300 -30 200 -75 12

6 1/147 60 360 -450 400 -225 72 -10

26

Newton’s Method

• Iterate to find y such that g(y) = 0, write
Taylor series for step from old y value,
y(m) to new y value, y(m+1)

)()()(2)()1(

)(

)()1(hOyy
dy

dg
ygyg mm

m

mm

)(

)(
)()1()(

m

m
mm

dy
dg

yg
yy

• Set g(y(m+1)) = 0 and
solve for y(m+1) – y(m)

– Use this to iterate since
solution is not exact

27

Solving

0),()(
0

1111

k

j
jnjnnnn yyxhfyyg

k

j
jnjnn yhfy

0
11

)(

1

)(
1)(

1
)1(

1
)(

m

n

m
nm

n
m

n

dy
dg

ygyy

)(

1

)(

1

1
m

n

m

n
y

f
h

dy

dg

• Iterate to
get yn+1
(m is
iteration
index)

28

Multivariable Gear Method

• Implicit equation in yn+1

• Expand fn+1 in Taylor series between
iteration m and iteration m+1 for yn+1

k

j
jnijnnni yxhfy

0
,111, , y

k

j
jnij

m
nj

m
nj

N

j

m

nj

im
nni

m
ni

yhOyy

y

f
xfhy

ODE

0
,

2)(
1,

)1(
1,

1

)(

1

)(
11

)1(
1,

)(

,

 y

29

Multivariable Gear Method II

• We have a set of simultaneous linear
equations to solve for yn+1 components
at each iteration

k

j
jnij

m
nni

m
nj

N

j

m
nj

m
nj

m

nj

i
ij

yxhfy

yy
y

f
h

ODE

0
,

)(
11

)(
1,

1

)(
1,

)1(
1,

)(

1

,

y

30

Partial Derivatives

• Need partial
derivatives of
each fi with
respect to each yj

21
32

1
2

2
321

1

32 yy
dx

dy
y

dx

dy

eyyy
dx

dy x

033

004

2

1
1

3

2
1

2

3
2

1

3

3

2

2

2
1

1

2

2

3

121
2

2

1

1

1

y

f
y

y

f
y

y

f

y

f

y

f
y

y

f

e
y

f
y

y

f

y

f x

Stiff Systems of Ordinary Differential
Equations

November 22, 2017

ME 501A Seminar in Engineering
Analysis Page 6

31

Subroutine for Partials

• This can come in different forms
depending on array allocation of code

• One simple form is to use repeated calls
to the subroutine for each fi

• The index, i, and the values of x and the
y array are passed to the routine and
the values of the partial derivatives of fk
with respect to each yj are returned in a
one dimensional array, p

32

C++ Function for Partials

void pderiv(double x, double y[],
int k, double p[])

{
if (k == 1)

{ p[1] = -1;

p[2] = 0.5 / sqrt(y[2]);

p[3] = exp(2 * x);

}

else if (k == 2)

33

C++ Function for Partials II
{ p[1] = -4 * y[1];

p[2] = p[3] = 0;

}

else if (k == 3)

{ p[1] = -3 * y[2];

p[2] = -3 * y[1];

p[3] = 0;

}

}
34

Group Work

• Start work on the first problem on the
homework for November 29

• Solve the problem y’ = -0.2xy with y(0) =
1 for four steps, with h = 0.2, using the
Adams-Moulton method

• See the next slide for the algorithm as
well as the starting values from the
fourth-order Runge-Kutta

• Exact solution is y = .

35

Group Work II

• Use Adams method to solve y’ = -0.2xy
with y(0) = 1 for four steps, with h = 0.2

i xi yi exact yi error fi
0 0 1 1 0 0
1 0.2 0.996008 0.996008 1.07E-11 -0.03984
2 0.4 0.984127 0.984127 1.04E-10 -0.07873
3 0.6 0.964640 0.964640 3.38E-10 -0.11576

