Stiff Systems of Ordinary Differential Equations

Midterm Problem Three

- Rearrangement gives examples of Bessel's equation with $v = 2$ and $v = 0.5$ $\frac{1}{v} \frac{dy}{dx} + \left(\frac{x^2 - v^2}{x^2} \right) y = 0$ $(\frac{2}{x^{2}} + \frac{1}{x} \frac{dy}{dx} + (\frac{x^{2} - v^{2}}{x^{2}})y =$ Ι l $+\frac{1}{x}\frac{dy}{dx}+\left(\frac{x^2-v^2}{x^2}\right)y$ *dx dy* dx^2 *x* d^2y 1 *dy* $(x^2 - v)$
- For integer $v = n = 2$, solution is $y =$ $AJ_2(x) + BY_2(x)$; for non-integer $v = 0.5$, solution is $AJ_{0.5}(x) + BJ_{-0.5}(x)$ Į
- Fitting boundary conditions gives first result as $3.226J_2(x) + 0.2247Y_2(x)$ and second as $1.138J_{0.5}(x) - 1.771J_{0.5}(x)$ **Northridge**

7

11

Solving Simultaneous ODEs • Apply same algorithms used for single ODEs – Must apply each step and substep to all equations in system – Key is having consistent x and **y** values in determination of f_i(x,y) $-$ All y_i values in **y** must be available at the same x point when computing the f_i $- E.g.,$ in Runge-Kutta we must evaluate k_1

- $dy/dx = -y + z$ and $dz/dx = y z$ with $y(0) = 1$ and $z(0) = -1$ with h = .1
- $k_{(1)v} = h[-y + z] = 0.1[-1 + (-1)] = -.2$
- $k_{(1)z} = h[y z] = 0.1[1 (-1)] = .2$
- $k_{(2)y} = h[-(y+k_{(1)y}/2) + z + k_{(1)z}/2] = 0.1$ $-(1 + 0.2/2) + (-1 + 0.2/2)] = -18$
- $k_{(2)z} = h[(y + k_{(1)y}/2) (z + k_{(1)z}/2)] = 0.1[(1$ + -0.2)/2 - (-1 + .2/2)] = .18

13

Northridge

20

31

Northridge

32 C++ Function for Partials void pderiv(double x, double y[], int k, double p[]) { if (k == 1) $\{ p[1] = -1;$ $p[2] = 0.5 / sqrt(y[2])$; $p[3] = exp(2 * x);$ } else if $(k == 2)$

California State University
 Northridge

