
Stiff Systems of Ordinary Differential
Equations

November 22, 2017

ME 501A Seminar in Engineering
Analysis Page 1

Stiff Systems of Ordinary
Differential Equations

Larry Caretto

Mechanical Engineering 501A

Seminar in Engineering Analysis

November 22, 2017

2

Outline
• Midterm Results
• Review last class

– Stability of numerical solutions
– Step size variation for error control
– Multistep methods with constant and

variable step size
• Systems of equations
• Definition of stiff systems
• Algorithms for stiff systems
• Finding if system is stiff

Midterm Problem One

3

y(0) = 1, y’(0) =
0, y(1) = 0

• Indicial equation, 3 + 32 + 3 + 1 = (
+ )3 = 0, has three identical roots of -1
so ݕு ൌ ଵܥ ൅ ݔଶܥ ൅ ଶݔଷܥ ݁ି௫

• Plug trial yP = Aex + Bx + C into ODE to
find A = 1, B = -2, and C = 5

• y = ଵܥ ൅ ݔଶܥ ൅ ଶݔଷܥ ݁ି௫ ൅ ݁௫ െ ݔ2 ൅ 5
• y(0) ଵ݁ି଴ܥ = 1 = ൅ ݁଴ െ 2 0 ൅ 5 = 1

ଵܥ ൌ െ5

Midterm Problem One II

4

• y’ = െ ଵܥ ൅ ݔଶܥ ൅ ଶݔଷܥ ݁ି௫ ൅ ݁௫ െ 2 ൅
ଶܥ ൅ ݔଷܥ2 ݁ି௫ ൌ ݔ	ݐܽ	0 ൌ 0

• െ ଵܥ ݁ି଴ ൅ ݁଴ െ 2 ൅ ଶ݁ି଴ܥ ൌ 0
• C2 = C1 – 1 + 2 = C1 + 1 = -5 + 1 = -4

• Boundary condition that y(1) = 0 is
solved to find C3 = 9 – 3e – e2

• Solution is

Midterm Problem Two

• Solve using Laplace transforms [y(0) =
1 and y’(0) = -1]

• 2ܻݏ ݏ െ ݕݏ 0 െ ′ݕ 0 ൅ 3ሾܻݏ ݏ െ
ݕ 0 ሿ ൅ 2ܻ ݏ ൌ 10 1

2൅12ݏ

• Rearrange/use partial fractions for Y(s)

ܻ ݏ ൌ ܣ

൅2ݏ
൅ ൅1ܤ

൅1ݏ
൅ ܦ൅ݏܥ

2൅12ݏ
5

ܻ ݏ ൌ
ݏ ൅ 2

ݏ ൅ 2 ݏ ൅ 1
൅

10
ݏ ൅ 2 ݏ ൅ 1 ଶݏ ൅ 1ଶ

Solve for Y(s)

Midterm Problem Two II

• Partial fractions results A = -2, B = 5, C
= -3, D = 1 so Y(s) equation is ܻ ݏ ൌ
ିଶ

௦ାଶ
൅ ଺

௦ାଵ
൅ ିଷ௦ାଵ

௦మାଵమ

• Finding inverse transforms gives the
final result

• ݕ ݐ ൌ െ2݁െ2ݐ ൅ 6݁െݐ െ ݏ݋3ܿ ݐ ൅ ݊݅ݏ ݐ

6

Stiff Systems of Ordinary Differential
Equations

November 22, 2017

ME 501A Seminar in Engineering
Analysis Page 2

Midterm Problem Three

• Rearrangement gives examples of
Bessel’s equation with  = 2 and  = 0.5

• For integer  = n = 2, solution is y =
AJ2(x) + BY2(x); for non-integer  = 0.5,
solution is AJ0.5(x) + BJ-0.5(x)

• Fitting boundary conditions gives first
result as 3.226J2(x) + 0.2247Y2(x) and
second as 1.138J0.5(x) – 1.771J-0.5(x)

7

0
1

2

22

2

2








 
 y

x

x

dx

dy

xdx

yd 

8

Systems of Equations
• Any problem with one or more ODEs of

any order can be reduced to a system
for first order ODEs

• In a previous lecture, we reduced a
system of two second order equations
to a system of four first order equations

• In this process the sum of the orders is
constant

• Look at previous example

9

Reduction of Order Example

• Define variables y3 = dy1/dt and y4 = dy2/dt
• Then dy3/dt = d2y1/dt2 and dy4/dt = d2y2/dt2

• Have four simultaneous first-order ODEs

00 2
2

23
1

2

2
2

2
2

2
1

2
1

1

21
2

1
2







 y
m

kk
y

m

k

dt

yd
y

m

k
y

m

kk

dt

yd

),(

),(

),(),(

42
2

23
1

2

24

32
1

2
1

1

213

24
2

13
1

y

y

yy

xfy
m

kk
y

m

k

dt

dy

xfy
m

k
y

m

kk

dt

dy

xfy
dt

dy
xfy

dt

dy













10

System of Equation Notation

• Write system as
vector equation

),(yf
y

x
dx

d


• Individual
components

),,,,(),(21 Nii
i yyyxfxf

dx

dy
 y

• Each fi may depend on x and all yj

),(

),(

),(),(

42
2

23
1

2

24

32
1

2
1

1

213

24
2

13
1

y

y

yy

xfy
m

kk
y

m

k

dt

dy

xfy
m

k
y

m

kk

dt

dy

xfy
dt

dy
xfy

dt

dy













11

Solving Simultaneous ODEs
• Apply same algorithms used for single

ODEs
– Must apply each step and substep to all

equations in system
– Key is having consistent x and y values in

determination of fi(x,y)
– All yi values in y must be available at the

same x point when computing the fi
– E.g., in Runge-Kutta we must evaluate k1

for all equations before finding k2

12

Runge-Kutta for ODE System
– y(n) is vector of dependent variables at x = xn

– k(1), k(2), k(3), and k(4), are vectors containing
intermediate Runge-Kutta results

– f is a vector containing the derivatives

– k(1) = hf = hf(xn, y(n))

– k(2) = hf(xn + h/2, y(n) + k(1)/2)

– k(3) = hf(xn + h/2, y(n) + k(2)/2)

– k(4) = hf(xn + h, y(n) + k(3))

– y(n+1) = (k(1) + 2k(2) + 2k(3) + k(4))/6

Stiff Systems of Ordinary Differential
Equations

November 22, 2017

ME 501A Seminar in Engineering
Analysis Page 3

13

ODE System by RK4

• dy/dx = -y + z and dz/dx = y – z with
y(0) = 1 and z(0) = -1 with h = .1

• k(1)y = h[-y + z] = 0.1[-1 + (-1)] = -.2

• k(1)z = h[y - z] = 0.1[1 - (-1)] = .2

• k(2)y = h[-(y+ k(1)y/2) + z + k(1)z/2] = 0.1[
-(1 + -0.2/2) + (-1 + .2/2)] = -.18

• k(2)z = h[(y+ k(1)y/2) –(z + k(1)z/2)] = 0.1[(1
+ -0.2)/2 - (-1 + .2/2)] = .18

14

ODE System by RK4 II

• k(3)y = h[-(y+ k(2)y/2) + z + k(2)z/2] = 0.1[
-(1 + -0.18/2) + (-1 + .18/2)] = -.182

• k(3)z = h[(y+ k(2)y/2) –(z + k(2)z/2)] = 0.1[(1
+ -0.18)/2 - (-1 + .18/2)] = .182

• k(4)y = h[-(y+ k(3)y) + z + k(3)z] = 0.1[-(1 +
-0.182) + (-1 + .182)] = -.1636

• k(4)z = h[(y+ k(3)y) –(z + k(3)z)] = 0.1[(1 +
-0.182) - (-1 + .182)] = .1636

15

ODE System by RK4 III

• yi+1 = yi + (k(1)y + 2k(2)y + 2k(3)y + k(4)y)/6
= 1 + [(–.2) + 2(–.18) + 2(–.182) +
(–.1636)]/6 = .8187

• zi+1 = zi + (k(1)z + 2k(2)z + 2k(3)z + k(4)z)/6
= –1 + [(.2) + 2(.18) + 2(.182) +
(.1636)]/6 = –.8187

• Continue in this fashion until desired
final x value is reached

• No x dependence for f in this example

16

Numerical Software for ODEs

• Usually written to solve a system of N
equations, but will work for N = 1

• User has to code a subroutine or
function to compute the f array
– Input variables are x and y; f is output

– Some codes have one dimensional
parameter array to pass additional
information from main program into the
function that computes derivatives

17

Derivative Subroutine Example

• Visual Basic code
for system of
ODEs at right is
shown below

Sub fsub(x as Double, y() as Double, _
f() as Double)

f(1) = -y(1) + Sqr(y(2)) + y(3)*Exp(2*x)

f(2) = -2 * y(1)^2

f(3) = -3 * y(1) * y(2)

End Sub

21
32

1
2

2
321

1

32 yy
dx

dy
y

dx

dy

eyyy
dx

dy x





18

Derivative Subroutine Example

• Fortran code for
system of ODEs
at right is shown
below

subroutine fsub(x, y, f)
real(KIND=8) x, y(:), f(:)
f(1) = -y(1) + sqrt(y(2)) +y(3)*exp(2*x)
f(2) = -2 * y(1)**2
f(3) = -3 * y(1) * y(2)

end subroutine fsub

21
32

1
2

2
321

1

32 yy
dx

dy
y

dx

dy

eyyy
dx

dy x





Stiff Systems of Ordinary Differential
Equations

November 22, 2017

ME 501A Seminar in Engineering
Analysis Page 4

19

Derivative Subroutine Example

• C++ code for
system of ODEs
at right is shown
below

void fsub(double x, double y[], double f[])

{

f[1] = -y[1] + sqrt(y[2]) + y[3]*exp(2*x);

f[2] = -2 * y[1] * y[1];

f[3] = -3 * y[1] * y[2];

}

21
32

1
2

2
321

1

32 yy
dx

dy
y

dx

dy

eyyy
dx

dy x





20

Stiff Systems of Equations

• Several definitions

• Basic problem is that there are several
length or time constants (eigenvalues)
in the system
– If one is negative and large in magnitude

compared to others, this will set stability

– Such terms quickly drop to zero and do not
affect physical solution

– However, they force small h for stability

21

Single Stiff Equation
• Nonhomogenous equation with different

length (time) scales
• dy/dx = f(x,y) = -a[y – F(x)] + dF/dx
• y = [y0 – F(0)]e-ax + F(x)

– Solution details on next two charts

• F(x) = cx + b: y = [y0 – b] e-ax + cx + b
– y/y0 = (1 – b/y0)e-ax + cx/y0 + b/y0

– y/y0 = (1 – b/y0)e-ax + ax(c/y0) + b/y0

– y/y0  e-ax as x  0 and y/y0  b/y0 +
(c/y0)(ax) as x  

22

Stiff Equation Solution
• dy/dx = f(x,y) = -a[y – F(x)] + dF/dx solu-

tion from formula for a first-order ODE

dx

dF
aFxgaxfxgyxf

dx

dy
)()()()(













  


dxexgCey

dxxfdxxf)()(
)(













  


dxexgCey

adxadx
)(

   dxexgCey axax)(

23

Stiff Equation Solution II

dx
dx

dF
aFedxexg axax 






  )(

FedxaeFFe

aFdxedFeaFdxe

axaxax

axaxax








)(

   )()(xFCeFeCedxexgCey axaxaxaxax   
 )()0()0(00 xFeFyysoFyC ax  

By parts
udF =
uF - Fdu

24

Gear’s Method

• Use implicit algorithms with solution by
Newton’s method

• General algorithm shown below
– k is global order of the method
– Coefficients: See table next slide




 
k

j
jnjnn yhfy

0
11 

• Solving g(y) = 0 by
Newton’s method

 
 )(

)(
)()1(

' m

m
mm

yg

yg
yy 

Stiff Systems of Ordinary Differential
Equations

November 22, 2017

ME 501A Seminar in Engineering
Analysis Page 5

25

Gear’s Method Coefficients

k        

1 1 1 1

2 1/3 2 4 -1

3 1/11 6 18 -9 2

4 1/25 12 48 -36 16 -3

5 1/137 60 300 -30 200 -75 12

6 1/147 60 360 -450 400 -225 72 -10

26

Newton’s Method

• Iterate to find y such that g(y) = 0, write
Taylor series for step from old y value,
y(m) to new y value, y(m+1)

 )()()(2)()1(

)(

)()1(hOyy
dy

dg
ygyg mm

m

mm  

)(

)(
)()1()(

m

m
mm

dy
dg

yg
yy




• Set g(y(m+1)) = 0 and
solve for y(m+1) – y(m)

– Use this to iterate since
solution is not exact

27

Solving

0),()(
0

1111  




k

j
jnjnnnn yyxhfyyg 




 
k

j
jnjnn yhfy

0
11 

)(

1

)(
1)(

1
)1(

1
)(

m

n

m
nm

n
m

n

dy
dg

ygyy











)(

1

)(

1

1
m

n

m

n
y

f
h

dy

dg

 


 

• Iterate to
get yn+1
(m is
iteration
index)

28

Multivariable Gear Method

• Implicit equation in yn+1

• Expand fn+1 in Taylor series between
iteration m and iteration m+1 for yn+1

  


 
k

j
jnijnnni yxhfy

0
,111, ,  y

 

   









 




















k

j
jnij

m
nj

m
nj

N

j

m

nj

im
nni

m
ni

yhOyy

y

f
xfhy

ODE

0
,

2)(
1,

)1(
1,

1

)(

1

)(
11

)1(
1,

)(

,



 y

29

Multivariable Gear Method II

• We have a set of simultaneous linear
equations to solve for yn+1 components
at each iteration

 

  




































k

j
jnij

m
nni

m
nj

N

j

m
nj

m
nj

m

nj

i
ij

yxhfy

yy
y

f
h

ODE

0
,

)(
11

)(
1,

1

)(
1,

)1(
1,

)(

1

, 



y

30

Partial Derivatives

• Need partial
derivatives of
each fi with
respect to each yj

21
32

1
2

2
321

1

32 yy
dx

dy
y

dx

dy

eyyy
dx

dy x





033

004

2

1
1

3

2
1

2

3
2

1

3

3

2

2

2
1

1

2

2

3

121
2

2

1

1

1



































 

y

f
y

y

f
y

y

f

y

f

y

f
y

y

f

e
y

f
y

y

f

y

f x

Stiff Systems of Ordinary Differential
Equations

November 22, 2017

ME 501A Seminar in Engineering
Analysis Page 6

31

Subroutine for Partials

• This can come in different forms
depending on array allocation of code

• One simple form is to use repeated calls
to the subroutine for each fi

• The index, i, and the values of x and the
y array are passed to the routine and
the values of the partial derivatives of fk
with respect to each yj are returned in a
one dimensional array, p

32

C++ Function for Partials

void pderiv(double x, double y[],
int k, double p[])

{
if (k == 1)

{ p[1] = -1;

p[2] = 0.5 / sqrt(y[2]);

p[3] = exp(2 * x);

}

else if (k == 2)

33

C++ Function for Partials II
{ p[1] = -4 * y[1];

p[2] = p[3] = 0;

}

else if (k == 3)

{ p[1] = -3 * y[2];

p[2] = -3 * y[1];

p[3] = 0;

}

}
34

Group Work

• Start work on the first problem on the
homework for November 29

• Solve the problem y’ = -0.2xy with y(0) =
1 for four steps, with h = 0.2, using the
Adams-Moulton method

• See the next slide for the algorithm as
well as the starting values from the
fourth-order Runge-Kutta

• Exact solution is y = ݁ି଴.ଵ௫
మ

35

Group Work II

• Use Adams method to solve y’ = -0.2xy
with y(0) = 1 for four steps, with h = 0.2

i xi yi exact yi error fi
0 0 1 1 0 0
1 0.2 0.996008 0.996008 1.07E-11 -0.03984
2 0.4 0.984127 0.984127 1.04E-10 -0.07873
3 0.6 0.964640 0.964640 3.38E-10 -0.11576

