Stiff Systems of Ordinary Differential Equations

- Rearrangement gives examples of Bessel's equation with v = 2 and v = 0.5 $\frac{d^2y}{dx^2} + \frac{1}{x}\frac{dy}{dx} + \left(\frac{x^2 - v^2}{x^2}\right)y = 0$
- For integer v = n = 2, solution is $y = AJ_2(x) + BY_2(x)$; for non-integer v = 0.5, solution is $AJ_{0.5}(x) + BJ_{.0.5}(x)$
- Fitting boundary conditions gives first result as $3.226J_2(x) + 0.2247Y_2(x)$ and second as $1.138J_{0.5}(x) 1.771J_{-0.5}(x)$

- dy/dx = -y + z and dz/dx = y z with y(0) = 1 and z(0) = -1 with h = .1
- $k_{(1)y} = h[-y + z] = 0.1[-1 + (-1)] = -.2$
- $k_{(1)z} = h[y z] = 0.1[1 (-1)] = .2$
- $k_{(2)y} = h[-(y + k_{(1)y}/2) + z + k_{(1)z}/2] = 0.1[$ -(1 + -0.2/2) + (-1 + .2/2)] = -.18
- $k_{(2)z} = h[(y + k_{(1)y}/2) (z + k_{(1)z}/2)] = 0.1[(1 + -0.2)/2 (-1 + .2/2)] = .18$

13

California State University Northridge

Stiff Systems of Ordinary Differential Equations

Gear's Method Coefficients									
k	γ	β	α0	α1	α2	α_3	α_4	α_5	
1	1	1	1						
2	1/3	2	4	-1					
3	1/11	6	18	-9	2				
4	1/25	12	48	-36	16	-3			
5	1/137	60	300	-30	200	-75	12		
6	1/147	60	360	-450	400	-225	72	-10	
Californ NO1	sia State University rthridge							25	

31

California State University Northridge

C++ Function for Partials I	
<pre>{ p[1] = -4 * y[1]; p[2] = p[3] = 0;</pre>	
}	
else if (k == 3)	
<pre>{ p[1] = -3 * y[2]; p[2] = -3 * y[1]; p[3] = 0;</pre>	
}	
}	
California State (Intersity Northridge	33

Group Work	
Start work on the first problem on the homework for November 29	
 Solve the problem y' = -0.2xy with y(0) = 1 for four steps, with h = 0.2, using the Adams-Moulton method 	
 See the next slide for the algorithm as well as the starting values from the fourth-order Runge-Kutta 	
• Exact solution is $y = e^{-0.1x^2}$	

